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I. INTRODUCTION

This paper is devoted to deterministic inventory models for three
primary veasons. The first i{s that such wodels provide considerable insight
about inventory models which may not be deterministic. The second is that
many stochastic models are approximated by deterministic ones (for example,
by using expected demand rates in place of deterministic ones) The third is
the limited variety of deterministic models which have been studied in the
literature. The first two reasons are of particular importance to people
who are applying inventory theory to real-world inventory systems.

Past work [3] on deterministic inventory models, with few exceptions,
has assumed the nature of the ordering policy to withh one or two unknown
parameters. For example, a periodic review model might specify that a

quantity Q can only be ordered at the end of a known period of time T.

The unusual problem would be to determine the value of the parameter Q which
minimizes the total purchase or production plus holding costs. If, however,
the nature of the optimal policy need not be specified prior to the analyszsis
then ve would expect that the complete nature of the optimal policy will result.
Unfortunately, if the nature of the ordering policy is not specified
then considerable complexity of analysis can result if one attempts to use the
differential calculus (see, for example, the work ofIArrow and Karlin [2]).
This complexity can be reduced however if the Maximum Principle of Pontryagin
et al {4] is used in determining the optimal ordering policy. Such an approach
will be taken in this paper.
The paper begins with an analysis of the no-stockout periodic review

problem posed by Arrow and Karlin [2] to illustrate the approach and the




E simplicity of analysis that it provides. Then an analysis of a periodic review
problem with stockouts allowed is made to show how the allowing of atockouts

complicates the optimal control problem.
I1. NO-STOCKOUTS PROBLEM

Mode) Formulation--This is a generalization of the problem formulated by

Arrow and Karlin (2]). We are interested in scheduling the production of an

item so as to minimize its production plus holding costs over a specified
period of time T. We will assume a zero lead time. Let

I(t) = the inventory level at time ¢t;

r(t) = demand rate at time t;

u(t) = the produciion rate at time t.
4 Both r(t) and u(t) are to be non-negative.
All demands are assumed to be met and, as a consequence,
| t
: I(t) = 1(0) + J fu(r) - r(t)ldr =2 0 (1)
j 0
where I(0) represents the on-hand inventory at the beginning of the time period.
We can rewrite (1) as

t t
ik 4 J u(t)dr = J r(t)dt - I(0) (2)
0 0

and consider it to represent a constraint on u(t).

The production and holding costs per unit time will be represented by
c(u(t)) and h(I(t)) respectively. We will assume that they are monotone-

increasing and continuously differentiable in their respective arguments. No

e i

other costs are assumed to exist. The total production plus holding costs
for the pericd are given by (3).
T

J(u) = J [e(u(t)) + h(I(t))]ldt . (3) |
0 i
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Our objective is to find a policy u(t) =0 which satisfies (2)

and minimizes (3).

The Maximum Principle for the Problem--For convenience, we will refer to (3)

{n the following form in our analysis:

T
J(u) = fo(u,I)dt
0

In applying the Maximum Principle a function called the Hamiltonian

{s created as follows:

H(u.I.Pooplot) - po(c)fo(u,l) + pl(t) %% 4)

ig obtained by differentiating (1). The Hamiltonian, upon

~lm

The derivative

introducing the expressions for fo and %%' , 1is given by (5) where t has

been suppressed.
H(u,I,ppsPy) = pole(W+h(D] + p, [u-r] s)

For fixed I, Pg» and Py let H(I,po,pl) = max H(u,I,pO,pl) over the domain

of u(t) values satisfying u(t) = 0 and I(t) 20

The necessary conditions for optimality of our problem from the
Maximum Principle are given by the following theorem [4].
Theorem: An admissible order policy u*(t) and the resulting inventory level

1*(t) are optimal if there exist continuous functions po(t) and pl(t)

which satisfy

dl _93H

t Py ’ (6)
dp
il
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dt dI (8)
Pl(T) «=0 (10)

guch that

H(u%, I*.po,pl) " M(I*,po,pl)
for all t {n (0,T).

The condition given by (10) is a consequence of the transversality
condition for a free right-hand end condition for I(t) ; that is, we are not
going to force I(T) to take on any specified value. This is a point of major
difference between this analysis and that of Arrow and Karlin(2) and Adiri and
Ben-Israel [1]). In both of these studies the assumption was made that I*(T) = O.
If, however, I(T) = 0 is really optimal then the results of the analysis ;hould

show it. We shail see below that they do.

The Optimal Policy--Examining the conditions from the theorem we get back from

(6) our constraint that %% = u(t) - r(t) and consequently that

t
I(t) = 1(0) + I [u(t)-r(x))dr
0

with I(0) as the given initial condition. From (7) and (9) we get po(t) = -]

for all t in [0,T}. From (8) we get

and, because po(t) - -1,
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Solving for pl(t), gi

t b

o d h(I) ’

p, (€) JO a1 4t +p,(0) . (11) 2

Because of (10) pl(T) = 0 1is needed and it follows that : %;

T dn | 3

Pl(O) = -J a1 dt ?ﬂ

0 b

and, therefore, (11) reduces to A

T !

d h(I 4

p, (€)= _J 48l 4 (12) 1

t

We will find %% helpful in selecting u*(t) . From (5) we obtain ?

di_ o dc(u .

du " Po " au P (13)

Substitution of po(t) = -1 and pl(t) as given by (12) into (13) then results %

in i‘i

T 1

di _ _dc(u _| dh(l) g

I - ™ Jt a1 dt . (14) \

de dh (I) i

Because we assumed e 0 and T 0 it is immediately evident from (14)

that %% < 0 for t in [0,T] and therefore that the maximum value of H

occurs for the smallest value of u(t) which satisfies u(t) = 0 and I(t) > 0.

Therefore, we deduce that

0 for 0st <t H

. 1
Wk (e) = § r(e) for t,sts T, (15)

where t; is obtained (1) when I(tl) = 0; that is, from

J " r(r)dt = 1(0) . :
°
-5-

i

]

et A ey - = _— pdpoe Lt P 8w e e A SR e




Bk AR diad ke b e

In other words, the optimal order policy is to first use up the on-hand inventory,
|
; then order to just meet current demand. We see that no inventory is held after

the initial inventory 1I(0) 1is consumed. It is therefore immediately evident

that I(T) = 0 under this policy.

Comments--The optimal policy is intuitively appealing. When there are costs assoc-
iated with both production and holding inventory we would like to avoid incurring
either if we can. The constralnts require, however, that we meet demand when it
occurs. Waiting to produce until we have used up the existing inventory 1I(0)
keeps inventory holding costs to a minimum because we reduce the inventory as

fast as possible while incurring no production costs. Producing only to meet
demand after the inventory 1I(0) is used up insures that I(t) 1is zero and
therefore that no holding costs are incurred. The production costs incurred are
only those necessary to meet the demand. The only restrictions we placed on

c¢(u) and h(I) were that

de(u) >0 for u=20 ,
du

dh(I)

NI >0 for I=20

dh(I)
dI

We c¢ould also allow = 0 and get the same result. TFor example, if there

is no holding cost for items in storage we would get (14) in the reduced form

@ _de
du du ;
and the optimal policy given by (15) still holds. Our result is much more
general than that of Arrow and Karlin [2] who required c(u) to be convex and h
continuously twice differentiable in addition to being monotone increasing. Further |

they only considered the case of h(I) = hI. Our result is also more general than

that of Adiri and Ben-Israel [1] even though they used a general h(I).

e i . S i

g e o e - = ~ e seesee e o i i S s e, R i




ITII. STOCKOUTS-ALLOWED PROBLEM

Model Formulation -- The problem when stockouts are allowed in general form

is to find wu(t) = 0 which minimizes (3); ie,
T

J(u) = J [e(u(t)) + h(I(t))] dt ,
0

where now h(I) represents holding and shortage costs.

The Hamiltonian and %% in this case are the same as (5) and (14)

respectively. They are repeated here for convenience.

H(u,I,po, pl) = P4 [c(u) + h(D)] + Py {u-r]

dh _ _ dc(u) T ah d
S 1 ir e T N
du du . dI

The theorem stated in the previous section still provides the necessary condit-

ions for optimal u(t). Although the assumption that Q%égl >0 for uz0

remains reasonable, the assumption %%- 2 0 is no longer reasonable over all

possible I(t) values because the "stockouts-allowed" case can result in

I{t) < 0. We expect instead that g%- < 0 for I(t) < 0 because a reduct-

ion in the number of shortages should result in a decrease in stockout costs.

It is therefore possible to get

T an(m i
. dI

and if this integral is large enough it could cause

o ,

dH

T 20

patriar s
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' we assume that h(I(t)) smoothly transitions from —hll(t) at I(t) = -¢

. further that the minimum point of the h(I) curve océurs at I =0 we can

for some values of t in [0,T]. If this should happen then optimal u 1f

would be infinite unless we impose an upper bound on its range. We will
therefore assume u(t) € b <= , : ¢

It is important to observe that we will always have

dn - LY NP o

du ¢=T B du 1

We can therefore say that regardless of the form of h(I) the optimal
ordering policy will always have u*(T) = 0, This information will be ex-
tremely useful in the analysis of the problem allowing stockouts.
To progress beyond this ohservation, we wmust select a form for h(I).

Suppose we assume a linear form as follows:

—hlI(t) for I(t) < 0

h(I(t)) =
h?_I(t) for I(t) 20

where h1 > 0 and h2 > 0 represent the shortage and holding costs per

unit of inventory per unit time. When we attempt to obtain the derivative

T of this form we realize that it does not exist at I(t) = 0. If, instead, 3

to +h21(t) at I(t) =+ ¢ for € > 0 but very small then the derivative

will exist at any point in the c-neighborhood of I(t) = 0. If we assume

.
approximate g% by the following form:

-h, for I(t) <0
-— = 0 for I(t) = 0

h2 for I(t) > 0 .

DN s et A e g el Sor S S YR YFIAI rimatt Ry § 1 o u bty AR ANNp P07k oy b S e 3 Kt VS A B $1) M bt 0 AP O 0 MY b RIS M L} e s s s s



r where k

For convenience we will also assume %% =k and r(t)

and r are positive constants.

Preliminary Observations about the Optimal Policies--Under the model assumpt—

ions we see that if I(t) > 0 over [0,T] then
T
B ¢ -] h.dr = -k -h,[T-t] (16)
. 2 2
and we realize that %% < 0 for all t in [0,T]. The optimal order policy
*
is u (t) = 0. Now if I(0) 2 rT, we will get I(t) = I(0)-rt > O for
u(t) = 0 except possibly at T where I(T) =0 when I(0) = rT.

Suppose next that I(0) < 0O and we order nothing, then I(t) = I(0) -rt <O

for all t 1in {0,T}. 1In this case,

dH
au -k + by (T-t}] , (17)
dH dH
and it is possible to get 0 2 0. If we set 0" 0 and solve for t in
(17) we get
E=T-F . (18)
1

In the range t < ¢t we have %% >0; intherange t <t < T we have
dH
du ° ¢

Because T,k, and hl are parameters of the problem it is possible to

have E <0 so that %% <0 over all t {n {0,T). This will occur when

T < %-. The optimal policy when this happens is to order nothing; le,
o
*
u (t) = 0.
When T > % then %% > 0 4if we order nothing. However, %% > 0

®
implies that u (t) = b. If b > r then it {s possible to get 1I(t) > ©

2
11
i 5
b
-
; ]
B
r
4




towards the end of the time period and (17) would no longer apply. Some
form such as (19) is suggested for t in [O,tl] where tl is the value of

t when I(t) = 0.

B _k+n

o ey = el = h[T-t,] . (19)

In spite of the additional complex forms for <— which may arise, they will

all have an appearance usimilar to (19).

The Optimal Policies--The optimal policies for the stockouts-allowed problem

will be stated before the arguments leading to these policies are presented.
Before stating the optimal policies it is convenienu to define several

quantities.

Let

hl[r-bJE
R e (20)
17 T,
I, = [r-b]t X (21)
13 - rt J (22)

23

(h.+h.]1(0) - h, [r-b]t
S 1 ; (23)

h1b+h2r

where t, given by (18), is repeated here for convenience,
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The optimal order policies are:

1. If;:>0 and (8) 0 < b < r, I(0)<I or (b) b=r,

1,
1(0) < 12, then
* b for 0t t ,
u (t) = N
0 for t < ts<T
2, If t>0, 0 <b <r, and I1 < 1(0) <I3, then
0 fOI' 0 s t < t ] .
* 2 -
u (t) = b for t«<t< t ,
0 for t < t<T .
3. If ¢t > 0, b=zr, and 0=< I(0) < 13, then
[o for 05 ¢ « 1O
* -
u (t) = r for -—(—‘Irm- sts<t¢t
0 for t < t<T . 3

L

5. Otherwise u*(c)-o for all t in (0,T)

PO




* .
Proof of the Optimal Policies--We have already shown that u (t) =0 if

I(0) 2 T or if I(t) <0 and t < 0 (that 1s, T < -% ) 1in our pre-
1
liminary comments. These cases corresponded to %% <0 over all t 1in

[0,T]. We can add I(t) <0 and t =0 to this list immediately because

t = 0 corresponds to %% =0 at t =0 and thus %% < 0 for all t in
(0,T).

Turning next to the case of I(t) < 0 and t > 0 we realize that,
because (17) applies, %% > 0 for t in [0,t), In this time period
* =
u (t) = b is the policy which will maximize H(u). The period (t,T] has

* * *
%% < 0 in (17) and u (t) = 0. The switch from u (t) =b to u (t) =0

-

takes place at t.

The conditions necessary for maintaining I(t) < O can be obtained
from consideration of the following equation for I(t) which results

from the optimal policy just stated.

-~

(
1(0) + [b-r]Jt for 0=zt <t R

I(t) =
I(0) + bt - rt fort <t <T .

\

If b < r chen I(t) decreases as t increases over [0,T]. Therefore,
1f I(0) < 0 then I(t) <0 over [0,T). If b= r then I(t) = I(0) as
long as u(t) = b and decreases as soon as u(t) = 0.

If b > r it is possible to have 1I(t) > 0. Now if b > r the max-
imum value of 1I(t) occurs at t. 1f I(t) 4ie to be nonpositive then

we must have

-l2~




I(t) = I(0) + [b-r]t < O

I(E) < 0 will occur if

1(0) < [r-b)ts I, .

where 12 < 0 because b > r.

In summary, we have just shown that

" b for 0ttt ,
u (t) = .
0 for t <t T ,

for all the conditions except 0 <I(0) < I1 for 0 <b < r of the first

optimal policy.

For I(0) > 0 it is also possivle to %% > 0 for some portion of [0,T].

We will concentrate on the range 0 < I(0) <rT because we have already

i et e

*
shown that u (t) =0 for I(0) = ¥T. If u(t) =0 and I(0) 1is in this ]

range then I(t) < 0 for t1< t < T where

_ 10 -
b, == . (24)

The corresponding eXpression for %E is

-k -hzltl-c] + hllT"tll for 0z t=<t

l 1
%% " (25)
-k +hl[T—:] for t £tsT . ;

has a slope of (+h2) in the region 0 =< t < t) and a slope of (-hl)

in the region £ < t < T. A representative family of %% curves for (25)

*5l

5

- o—— 4 oy
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are shown in figure 1 and covers 1I(0) values for [O,rT). The curves
designated by 1 and 5 correspond to I(0) = 0 and 1I(0) = rT, respect-

ively. The optimality condition %% = -k for t = T is imposed on each

curve of the figure.
dH

Any curve between 1 and 2 suggests one switching; that 1is, au

~

is positive for t < t and negative for t > t. Any curve, such as 3 ,

between 2 and 4 suggests two switchings because %% is negative, then

positive, and then negative again. Any curve between 4 and 5 suggests
no switching should take place.
It is immediately evident that conditions resulting in %% curves

*
between 4 and S can be added to the u (t) = 0 1list. Curve &4 corres-

ponds to tl -t which, when stated in terms of I1(0), results in

1(0) = rt: Ly

*
Therefore, 1f I(0) 2 13 then u (t) = 0 for all t in [O0,T).

Because u(t) = 0 is not optimal for the curves between 1 and 4
we will first investigate the behavior of I(t) when we follow the switch-
ing patterns suggested by the curves. We will then re-evaluate the express-

ions for %% . This process may require several iterations before a pair

of "matching" 1I(t) and %% curves can be obtained signalling that

optimal u(t) has been found.
One switching should be considered for conditions creating the curves

between 1 and 2 ; the switching should occur at %% = 0, From figure 1

we know that %% = 0 only in the segment dominated by h1 and that (17)

~

applies. Therefore switching should occur at t.

14~
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Figure 1.

du

curves for equation (25).
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If we let

b for 0<t=<t |,
u(t) =
0 for t <t=T ,

then, from (1),

1(0) + [b-r}jt for 0=t
I(t) = (26)

I(0) + bt ~rt for t <t < T

A
r

A family of I(t) curves for (26) is shown in figure 2. Curve 1 1is
representative of a case when b > r. Curve 2 results from b = r. Curves
3 , 4 , and 5 correspond to b <r. Curve 5 has b =0 and is
the limiting curve for the b <r cases.

Figure 3 shows the curves of %% corresponding to I(t) curves of

figure 2. The same curve numbers have been used in both figures to show

the correspondence. Curves between 1 and 3 have %% <0 over (0,T)

and suggest that no switching is optimal. Curves between 3 and 5 suggest

that at least one switching is optimal.
For any curves between 4 and 5 we see that %% has the same

behavior as in figure 1 for curves between 1 and 2 . Therefore,
/

b for 0sts=t¢t,

*

u () = ﬁ
0 for t <t =T,

L]
for the conditions leading to these %% curves.

The first condition is that 0 <b < r. The second is that %%-2 0

at t = 0, Translating this into a relationship involving 1(0) we have

r-b

[hl'r-k] : 1
1 2

1 .

-16-
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Figure 2. Curves of I(t) for equation (26).
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dH
du

Figure 3. %% curves associated with the I(t) curves of

figure 2.
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This analysis has been based on the assumption that I(0) > 0, therefore

the proof of the first optimal policy is complete.
We consider next the curves between 3 and 4 . Figure 2 indicates

that 0 <b < r and figure 3 shows that two switchings may be optimal;

~ ~

~
~

the first at some time t prior to t and the second at t. The following

policy is therefore suggested.

0 for 0=t <t 1

»

u(t) = b for tsts¢t . (27)
0 for t <tsT
LY
The corresponding expression for I(t) would then be
I(0) ~ rt for 0t <t
I(t) = I(0) + b[t-t] - rt for t < t=< ¢ (28)
1(0) + b[t—E] -rt for t <t=<T .

Figure 4 illustrates the family of curves associated with (28) and
figure 5 presents the corresponding %% curves. From these two figures we
*
see that curves 2 and 3 will have u (t) given by (27). To firnd the

value of t we set %% = 0 1in equation (19) where now I(t) = 0 at

2 1(0) - rt
tl t+~————-—b_r

We will get the expression given by (23) and t >0 if

b, [r-blt
I(O) e T S I .
hl + h2 1
Similarly, t <t if
I(0) <rt = 13 .
When I{0) = I we get t =0 and the optimal policy given by

-19-
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I(t)

Figure 4. Curves of I(t) for equation (28).
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Figure 5. Curves of %% associated with the I(t) curves Z
of figure 4. f

-21-

B AR e T e e 1 i o AR o




(27) reduces to that derived above for the case of I(0) < Il and I(t)

corresponds to curve 4 of figure 4. If t = t then (27) reduces to

*
u (t) = 0 and I(t) corresponds to curve 1 of figure 4. We have aiready

R i

*
shown that u (t) = 0 if 1I(0) = I. regardless of the relationship of

3

: b to r. In summary, whem t > 0, b <r, and I, <I(0)<1I then

1 3
*
u (t) 1is given by (27) and the second optimal policy is confirmed.

To complete the analysis of cases for I(0) = 0 we next consider the

case of b= r. When b = r the bound Il is zero while I3 does not

change so 0 < I(0) < I Equation (23) reduces to

30

t-..I_(gz.

r

We realize that ¢t occupé simultaneously with t. as glven by (24)

]
and hence I(t) = 0 between t and t. Equation (31) shows that %%

is constant over this~interval because %% =0 for I(t) = 0 was assumed.

-k - hz[E—t] + h IT-t] for O0sts<t

1
gH -k + h_ [T-t] for s k=té (31)
du 1
-~k + hl[T-t] for tstsT .
From the definition of t we also realize that this constant value of %%

*
must be zero. Therefore u (t) can take on any value between 0 and b.
: ~ *
However, I(t) = 0 for t in [t,t] only if u (t) = b.
This argument can be easily extended to the case of b > r. The optimal

policy should take the following form, however;

0 for 0<¢t <t
* 2 "
u (t) = r for t=st<t (32)
0 for t <t=s=T .
%
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The corresponding expression for %% is again given by

is

dH
du

= () over tst <

-

t we can assign any value of u

(31) and since

as optimal between

» R A
and b. The only value of u which will maintain I(t) = 0 over [t,t]

now u((t) = r.

The third optimal policy has been proved.

Figure 6 illustrates the resulting curves of I(t) and

These arguments can also be used for the case of b > r and 12 <I1(0) < 0.

We recall that u(t) = b for ([0,t] and zero outerwise would result in

I(t) > 0. Figure 7 contains possible I(t) curves. The corresponding %%

curves are shown in figure 8.

The curves 3 in the two figures correspond to the case of I(0) = I2

and the first optimal policy applies (equation (32) would have t = Q).

The curves 1 and 2

from figure 7 do not allow g%

-k for t =T and

hence u(t) given by (32) is not optimal. However, if we assume the following

form for u(t) we can satisfy this condition.

S
D Lt

s

b for 0=st=<t ,
u(t) = Y for é sts< t s (33)
0 for E =st<T ,
where now
é - 1(0)
{b-r] °
dH
The resulting equation for ™ is:
-k + hl[E-t] + hl[T=E] for 0sts<t
dH ~ 3 ;
il -k + hl[T-t] fort<stst
-k + b, [T-t] fortsts<T .
We realize, as we did for (31), that %% =0 for t<ts<t and
_23_
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I(0)

» +

(=1
I

>

*
. Figure 6. I(t) and g—ﬁ— curves for u (t) given by equation 3

(32).
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I(t)

Figure 7. Possible I(t) curves for b > r, I(0) <0,
u(t) = b over [0,t].
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Y ' : Figure 8. Curves of % associated with the
curves of figure 7.
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dH *
Figure 9. Curves of I(t) end Tu for u (t) given

by (33).
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that we should select u(t) = r to maintain I(t) = 0 over this interval.
Therefore (33) gives the optimal policy when 12 <I(() < 0. The curves of
I(t) and %% are shown in figure 9. The proof of the fourth optimal policy

is complete.

Comments—-WPen stockouts are allowed we see that the analysis becomes immedi-
ately more complex because the I(t) = 0 constraint has been removed and
therefore the region of feasible wu(t) has expanded to always include
u(t) = 0. The assumption of an upper bound on u and specific forms for
the elements of the cost function appear necessary before an analysis can
proceed.

The linear problem presented in the preceding section was chosen for
the illustration of the stockouts-allowed analysis primarily because the
cost functions are typical of many deterministic models appearing in the
literature. Future analyses will investigate the influence of several diff-
erent nonlinear cost forms. It should be evident from the preceding analysis
that while the use of the Maximum Principle allows a general order policy to
be postulated, it requires that careful consideration be given to the form
of the objective function. In contrast to the no-stockouts model, the
nature of the form selected will strongly influence the nature of the optimal
order pol;gy.'

The iterative procedure of postulating u(t), evaluating I(t) and

du

problems having nonlinear cost functions. The virtue in obtaining the "matched

%%-, and re-postulating u(t) until finally a '"matched set' of expressions
for I(t) and 9B e obtained seems to hold considerable promise for

set" is that then both the necessary and sufficient conditions for optimality

have been obtained.




(1]

[2]

(3]

(4]
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